论文标题
D3T-GAN:数据依赖性域传输gans for少数拍摄图像生成
D3T-GAN: Data-Dependent Domain Transfer GANs for Few-shot Image Generation
论文作者
论文摘要
作为一个重要且具有挑战性的问题,很少有图像生成旨在通过训练GAN模型来生成逼真的图像,给出了很少的样本。几次发电的典型解决方案是将训练有素的GAN模型从数据富的源域转移到数据缺陷目标域。在本文中,我们提出了一种称为D3T-GAN的新型自我监管的转移方案,以几乎没有图像产生的跨域gans转移解决。具体来说,我们设计了两种单独的策略来分别在发生器和歧视者之间转移知识。为了在发电机之间转移知识,我们进行了一个与数据有关的转换,该转换将目标样本投射并重建源发电机空间。然后,我们执行从转化样本到生成样本的知识转移。为了转移歧视者之间的知识,我们设计了一个多级别的判别知识蒸馏,从源歧视者到实际样本和假样品的目标歧视者。广泛的实验表明,我们的方法提高了生成的图像的质量,并在常用数据集上达到了最先进的FID分数。
As an important and challenging problem, few-shot image generation aims at generating realistic images through training a GAN model given few samples. A typical solution for few-shot generation is to transfer a well-trained GAN model from a data-rich source domain to the data-deficient target domain. In this paper, we propose a novel self-supervised transfer scheme termed D3T-GAN, addressing the cross-domain GANs transfer in few-shot image generation. Specifically, we design two individual strategies to transfer knowledge between generators and discriminators, respectively. To transfer knowledge between generators, we conduct a data-dependent transformation, which projects and reconstructs the target samples into the source generator space. Then, we perform knowledge transfer from transformed samples to generated samples. To transfer knowledge between discriminators, we design a multi-level discriminant knowledge distillation from the source discriminator to the target discriminator on both the real and fake samples. Extensive experiments show that our method improve the quality of generated images and achieves the state-of-the-art FID scores on commonly used datasets.