论文标题

使用相校正线性噪声近似的贝叶斯推断对随机振荡系统的推断

Bayesian inference for stochastic oscillatory systems using the phase-corrected Linear Noise Approximation

论文作者

Swallow, Ben, Rand, David A., Minas, Giorgos

论文摘要

基于可能性的非线性动力学系统(例如在化学反应网络和生物钟系统中发现的)的推断本质上是复杂的,并且在很大程度上仅限于小型且不切实际的简单系统。在基本条件概率分布上可分析可处理的近似值的最新进展使长期动力学能够准确地建模,并使精确贝叶斯推断所需的大量模型评估更加可行。我们提出了一种新的方法,用于在表现出振荡行为的随机非线性动力学系统中推断,并显示这些模型中的参数可以从模拟数据中实际估计。基于模型的Fisher信息矩阵的初步分析可以指导贝叶斯推论的实施。我们表明,此参数灵敏度分析可以预测哪些参数实际上是可识别的。比较了几种马尔可夫链蒙特卡洛算法,我们的结果表明,平行回火算法始终为这些系统提供了最佳方法,这些方法经常显示出多模式后分布。

Likelihood-based inference in stochastic non-linear dynamical systems, such as those found in chemical reaction networks and biological clock systems, is inherently complex and has largely been limited to small and unrealistically simple systems. Recent advances in analytically tractable approximations to the underlying conditional probability distributions enable long-term dynamics to be accurately modelled, and make the large number of model evaluations required for exact Bayesian inference much more feasible. We propose a new methodology for inference in stochastic non-linear dynamical systems exhibiting oscillatory behaviour and show the parameters in these models can be realistically estimated from simulated data. Preliminary analyses based on the Fisher Information Matrix of the model can guide the implementation of Bayesian inference. We show that this parameter sensitivity analysis can predict which parameters are practically identifiable. Several Markov chain Monte Carlo algorithms are compared, with our results suggesting a parallel tempering algorithm consistently gives the best approach for these systems, which are shown to frequently exhibit multi-modal posterior distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源