论文标题
汉克尔边缘的树木和(半)哈密顿图的理想
Hankel edge ideals of trees and (semi-)Hamiltonian graphs
论文作者
论文摘要
在本文中,我们研究了图形的汉克尔边缘理想。我们确定了标记为哈密顿量和半汉顿图的Hankel边缘理想的最低素数理想,并且我们研究了激进性,是一个完整的交叉点,几乎是完整的交叉点并设置了此类图的理论完整交叉点。我们还考虑了带有天然标签的树木的汉克边缘理想,称为扎根标签。我们表征了这样的树木,其汉克(Hankel)边缘理想是一个完整的交集,此外,我们确定了那些相对于反向词典秩序最初理想的人。
In this paper, we study the Hankel edge ideals of graphs. We determine the minimal prime ideals of the Hankel edge ideal of labeled Hamiltonian and semi-Hamiltonian graphs, and we investigate radicality, being a complete intersection, almost complete intersection and set theoretic complete intersection for such graphs. We also consider the Hankel edge ideal of trees with a natural labeling, called rooted labeling. We characterize such trees whose Hankel edge ideal is a complete intersection, and moreover, we determine those whose initial ideal with respect to the reverse lexicographic order satisfies this property.