论文标题

伪标签引导的多对比度泛化,用于非对比度的器官感知分段

Pseudo-Label Guided Multi-Contrast Generalization for Non-Contrast Organ-Aware Segmentation

论文作者

Lee, Ho Hin, Tang, Yucheng, Gao, Riqiang, Yang, Qi, Yu, Xin, Bao, Shunxing, Terry, James G., Carr, J. Jeffrey, Huo, Yuankai, Landman, Bennett A.

论文摘要

非对比度计算机断层扫描(NCCT)通常用于肺癌筛查,一般腹痛或可疑的肾结石,创伤评估以及许多其他适应症的评估。但是,没有对比度限制区分边界之间的器官。在本文中,我们提出了一种新型的无监督方法,该方法利用成对对比度增强的CT(CECT)上下文来计算无基真实标签的非对比度分割。与生成的对抗方法不同,我们用CECT计算成对的形态环境,以提供教师指导,而不是产生假解剖环境。此外,我们进一步增加了“器官特异性”设置中的强度相关性,并提高了对器官感知边界的敏感性。我们使用配对的非对比度和对比度增强的CT扫描验证了多器官分割的方法。完整的外部验证是对主动脉分割的独立非对比子组进行的。与当前腹部器官在完全监督的环境中进行最新分割相比,我们提议的管道可显着提高3.98%的骰子(内部多器官注释),腹部器官分割的8.00%(外主动脉注释)。代码和预估计的模型可在https://github.com/masilab/contrastmix上公开获得。

Non-contrast computed tomography (NCCT) is commonly acquired for lung cancer screening, assessment of general abdominal pain or suspected renal stones, trauma evaluation, and many other indications. However, the absence of contrast limits distinguishing organ in-between boundaries. In this paper, we propose a novel unsupervised approach that leverages pairwise contrast-enhanced CT (CECT) context to compute non-contrast segmentation without ground-truth label. Unlike generative adversarial approaches, we compute the pairwise morphological context with CECT to provide teacher guidance instead of generating fake anatomical context. Additionally, we further augment the intensity correlations in 'organ-specific' settings and increase the sensitivity to organ-aware boundary. We validate our approach on multi-organ segmentation with paired non-contrast & contrast-enhanced CT scans using five-fold cross-validation. Full external validations are performed on an independent non-contrast cohort for aorta segmentation. Compared with current abdominal organs segmentation state-of-the-art in fully supervised setting, our proposed pipeline achieves a significantly higher Dice by 3.98% (internal multi-organ annotated), and 8.00% (external aorta annotated) for abdominal organs segmentation. The code and pretrained models are publicly available at https://github.com/MASILab/ContrastMix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源