论文标题
跨域人群计数的双层对齐
Bi-level Alignment for Cross-Domain Crowd Counting
论文作者
论文摘要
最近,人群密度估计受到了越来越多的关注。这项任务的主要挑战是在大量培训数据上获得高质量的手动注释。为了避免依赖此类注释,以前的工作通过将知识从易于访问的合成数据传输到现实世界数据集,应用了无监督的域适应性(UDA)技术。但是,当前的最新方法要么依靠外部数据来训练辅助任务,要么应用昂贵的粗到精细估计。在这项工作中,我们旨在开发一种新的基于对抗性学习的方法,该方法简单而有效地适用。为了减少合成数据和真实数据之间的域间隙,我们设计了一个由(1)任务驱动的数据对齐和(2)精细元素对准组成的双层对齐框架(BLA)。与以前的域增强方法相反,我们介绍了AutoML来搜索源上的最佳变换,该源可用于下游任务。另一方面,我们对前景和背景进行细粒度对齐,以减轻对齐困难。我们评估了我们在五个现实世界中计算基准测试的方法,在那里我们以很大的利润优于现有方法。同样,我们的方法很简单,易于实施,并且可以施加高效。该代码可在https://github.com/yankeegsj/bla上公开获取。
Recently, crowd density estimation has received increasing attention. The main challenge for this task is to achieve high-quality manual annotations on a large amount of training data. To avoid reliance on such annotations, previous works apply unsupervised domain adaptation (UDA) techniques by transferring knowledge learned from easily accessible synthetic data to real-world datasets. However, current state-of-the-art methods either rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation. In this work, we aim to develop a new adversarial learning based method, which is simple and efficient to apply. To reduce the domain gap between the synthetic and real data, we design a bi-level alignment framework (BLA) consisting of (1) task-driven data alignment and (2) fine-grained feature alignment. In contrast to previous domain augmentation methods, we introduce AutoML to search for an optimal transform on source, which well serves for the downstream task. On the other hand, we do fine-grained alignment for foreground and background separately to alleviate the alignment difficulty. We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin. Also, our approach is simple, easy to implement and efficient to apply. The code is publicly available at https://github.com/Yankeegsj/BLA.