论文标题

代数机器学习,并应用化学

Algebraic Machine Learning with an Application to Chemistry

论文作者

Sai, Ezzeddine El, Gara, Parker, Pflaum, Markus J.

论文摘要

随着科学应用中使用的数据集变得越来越复杂,研究数据的几何形状和拓扑已成为数据分析过程中日益普遍的一部分。例如,这可以看出,对拓扑工具(例如持续的同源性)的兴趣日益增长。但是,一方面,拓扑工具本质上仅限于提供有关数据基础空间的粗略信息。另一方面,更多的几何方法主要依赖于歧管假设,该假设断言基础空间是平滑的歧管。对于许多物理模型,基础空间包含奇点的许多物理模型都失败了。 在本文中,我们开发了一条机器学习管道,该管道可捕获细粒的几何信息,而不必依靠任何平滑度假设。我们的方法涉及在代数几何形状和代数品种的范围内工作,而不是差分几何和光滑的歧管。在多样性假设的设置中,学习问题成为使用样本数据找到基本品种的问题。我们将这个学习问题投入到最大的后验优化问题中,我们根据特征值计算解决了该问题。找到了基本品种后,我们探索了Gröbner基碱基和数值方法的使用来揭示有关其几何形状的信息。特别是,我们提出了一种启发式方法,用于在基础品种的奇异轨迹附近检测到位于数字上的启发式。

As datasets used in scientific applications become more complex, studying the geometry and topology of data has become an increasingly prevalent part of the data analysis process. This can be seen for example with the growing interest in topological tools such as persistent homology. However, on the one hand, topological tools are inherently limited to providing only coarse information about the underlying space of the data. On the other hand, more geometric approaches rely predominately on the manifold hypothesis, which asserts that the underlying space is a smooth manifold. This assumption fails for many physical models where the underlying space contains singularities. In this paper we develop a machine learning pipeline that captures fine-grain geometric information without having to rely on any smoothness assumptions. Our approach involves working within the scope of algebraic geometry and algebraic varieties instead of differential geometry and smooth manifolds. In the setting of the variety hypothesis, the learning problem becomes to find the underlying variety using sample data. We cast this learning problem into a Maximum A Posteriori optimization problem which we solve in terms of an eigenvalue computation. Having found the underlying variety, we explore the use of Gröbner bases and numerical methods to reveal information about its geometry. In particular, we propose a heuristic for numerically detecting points lying near the singular locus of the underlying variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源