论文标题

单个视频的多样化视频生成

Diverse Video Generation from a Single Video

论文作者

Haim, Niv, Feinstein, Ben, Granot, Niv, Shocher, Assaf, Bagon, Shai, Dekel, Tali, Irani, Michal

论文摘要

甘斯能够执行通过单个视频培训的发电和操纵任务。但是,这些单一的视频需要不合理的时间来训练单个视频,这使它们几乎不切实际。在本文中,我们质疑从单个视频中生成gan的必要性,并为各种一代和操纵任务引入非参数基线。我们复兴了古典时空贴片,最终邻居接近,并将它们适应可扩展的无条件生成模型,而无需任何学习。这个简单的基线令人惊讶地优于视觉质量和现实主义(通过定量和定性评估证实)的单个视频剂,并且更快地(从几天减少到秒)。我们的方法很容易缩放到全高清视频。我们还使用相同的框架来演示视频类比和时空重新定位。这些观察结果表明,经典方法对这些任务的强大深度学习机械的表现大大优于。这为单个视频生成和操纵任务设定了一个新的基线,同样重要 - 使单个视频的多样化几乎是第一次成为可能的。

GANs are able to perform generation and manipulation tasks, trained on a single video. However, these single video GANs require unreasonable amount of time to train on a single video, rendering them almost impractical. In this paper we question the necessity of a GAN for generation from a single video, and introduce a non-parametric baseline for a variety of generation and manipulation tasks. We revive classical space-time patches-nearest-neighbors approaches and adapt them to a scalable unconditional generative model, without any learning. This simple baseline surprisingly outperforms single-video GANs in visual quality and realism (confirmed by quantitative and qualitative evaluations), and is disproportionately faster (runtime reduced from several days to seconds). Our approach is easily scaled to Full-HD videos. We also use the same framework to demonstrate video analogies and spatio-temporal retargeting. These observations show that classical approaches significantly outperform heavy deep learning machinery for these tasks. This sets a new baseline for single-video generation and manipulation tasks, and no less important -- makes diverse generation from a single video practically possible for the first time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源