论文标题
从纵向用户文本中确定变化的时刻
Identifying Moments of Change from Longitudinal User Text
论文作者
论文摘要
通过在在线平台上共享的内容观察到的个人行为和情绪的变化越来越重要。关于该主题的大多数研究都集中在:(a)识别有风险的人,或者在一批帖子中或(b)在邮政级别提供等效标签的人。这种工作的缺点是缺乏强大的时间成分,并且无法在个人的轨迹和及时干预后进行纵向评估。在这里,我们定义了一项新任务,即根据在线共享内容来确定个人变化时刻的任务。我们认为的变化是情绪突然变化(开关)或逐渐的情绪进展(升级)。我们创建了详细的指南,以捕捉变更时刻和500个手动注释的用户时间表(18.7k帖子)的语料库。我们已经开发了各种基线模型从相关任务中汲取灵感,并表明最好的性能是通过上下文意识到的顺序建模获得的。我们还引入了新的指标,以捕获暂时窗口中的罕见事件。
Identifying changes in individuals' behaviour and mood, as observed via content shared on online platforms, is increasingly gaining importance. Most research to-date on this topic focuses on either: (a) identifying individuals at risk or with a certain mental health condition given a batch of posts or (b) providing equivalent labels at the post level. A disadvantage of such work is the lack of a strong temporal component and the inability to make longitudinal assessments following an individual's trajectory and allowing timely interventions. Here we define a new task, that of identifying moments of change in individuals on the basis of their shared content online. The changes we consider are sudden shifts in mood (switches) or gradual mood progression (escalations). We have created detailed guidelines for capturing moments of change and a corpus of 500 manually annotated user timelines (18.7K posts). We have developed a variety of baseline models drawing inspiration from related tasks and show that the best performance is obtained through context aware sequential modelling. We also introduce new metrics for capturing rare events in temporal windows.