论文标题
NMR:自主驾驶的神经歧管表示
NMR: Neural Manifold Representation for Autonomous Driving
论文作者
论文摘要
自主驾驶需要有效地推理场景语义的时空性质。最近的方法已成功地合并了一个自动驾驶堆栈的传统模块化体系结构,该堆栈包括端到端可训练系统中的感知,预测和计划。这样的系统要求使用可解释的中间训练的投影表示形式嵌入共享的潜在空间。成功部署的表示形式是,在自我框架中对场景的鸟眼景(BEV)表示。但是,对未呈现的BEV的基本假设是自我车辆周围世界的局部共同性。这种假设非常限制,因为一般的道路确实具有梯度。由此产生的扭曲使路径规划效率低下和不正确。为了克服这一局限性,我们提出了神经歧管表示(NMR),这是自主驾驶任务的表示形式,该任务学会了推断语义,并在有限的地平线上的多种歧管上预测,以自我载体为中心。我们使用迭代的注意机制应用于周围单眼图像和部分自我车辆状态的潜在高维嵌入。这种表示有助于产生与表面几何形状一致和认识的行为计划。我们提出了一种基于边缘自适应覆盖率损失BEV占用网格和相关的引导流场的采样算法,以生成表面歧管,同时产生最小的计算开销。我们旨在测试我们方法对Carla和Synthia-SF的功效。
Autonomous driving requires efficient reasoning about the Spatio-temporal nature of the semantics of the scene. Recent approaches have successfully amalgamated the traditional modular architecture of an autonomous driving stack comprising perception, prediction, and planning in an end-to-end trainable system. Such a system calls for a shared latent space embedding with interpretable intermediate trainable projected representation. One such successfully deployed representation is the Bird's-Eye View(BEV) representation of the scene in ego-frame. However, a fundamental assumption for an undistorted BEV is the local coplanarity of the world around the ego-vehicle. This assumption is highly restrictive, as roads, in general, do have gradients. The resulting distortions make path planning inefficient and incorrect. To overcome this limitation, we propose Neural Manifold Representation (NMR), a representation for the task of autonomous driving that learns to infer semantics and predict way-points on a manifold over a finite horizon, centered on the ego-vehicle. We do this using an iterative attention mechanism applied on a latent high dimensional embedding of surround monocular images and partial ego-vehicle state. This representation helps generate motion and behavior plans consistent with and cognizant of the surface geometry. We propose a sampling algorithm based on edge-adaptive coverage loss of BEV occupancy grid and associated guidance flow field to generate the surface manifold while incurring minimal computational overhead. We aim to test the efficacy of our approach on CARLA and SYNTHIA-SF.