论文标题
使用具有完整局部坐标的图神经网络对哈密顿和电子特性的有效测定
Efficient determination of the Hamiltonian and electronic properties using graph neural network with complete local coordinates
论文作者
论文摘要
尽管机器学习方法在物理科学方面取得了成功,但对哈密顿的预测以及因此电子特性的预测仍然不令人满意。在这里,基于图形神经网络体系结构,我们提出了一个可扩展的神经网络模型,以确定从头算数据中的哈密顿量,只有本地原子结构作为输入。我们完整的本地坐标实现了哈密顿量的旋转阶段性。使用卷积神经网络编码并旨在保存冬宫对称性的本地坐标信息,用于将跳参数映射到局部结构上。我们使用石墨烯和SIGE随机合金作为示例演示了模型的性能。我们表明,我们的神经网络模型虽然使用小型系统进行了训练,但可以预测哈密顿量,以及在从头开始准确性中的大型系统的状态结构和状态(DOS)等电子特性,证明其可扩展性是合理的。结合我们的模型的高效率,仅需几秒钟即可获得1728-ATOM系统的哈密顿量,目前的工作提供了一个通用框架,可以有效,准确地预测电子特性,从而为计算物理学提供了新的见解,并将加速研究以获得大型材料。
Despite the successes of machine learning methods in physical sciences, prediction of the Hamiltonian, and thus electronic properties, is still unsatisfactory. Here, based on graph neural network architecture, we present an extendable neural network model to determine the Hamiltonian from ab initio data, with only local atomic structures as inputs. Rotational equivariance of the Hamiltonian is achieved by our complete local coordinates. The local coordinates information, encoded using the convolutional neural network and designed to preserve Hermitian symmetry, is used to map hopping parameters onto local structures. We demonstrate the performance of our model using graphene and SiGe random alloys as examples. We show that our neural network model, although trained using small-size systems, can predict the Hamiltonian, as well as electronic properties such as band structures and densities of states (DOS) for large-size systems within the ab initio accuracy, justifying its extensibility. In combination with the high efficiency of our model, which takes only seconds to get the Hamiltonian of a 1728-atom system, present work provides a general framework to predict electronic properties efficiently and accurately, which provides new insights into computational physics and will accelerate the research for large-scale materials.