论文标题

极端建模面板

Modeling panels of extremes

论文作者

Dupuis, Debbie J., Engelke, Sebastian, Trapin, Luca

论文摘要

极值应用通常采用回归技术来捕获数据中的横截面异质性或时间变化。众所周知,由于应用程序中通常可用的观察值少数观察值,因此众所周知,极端价值回归模型的参数的估计是具有挑战性的。当重复的极端测量在同一个体上收集,即,可以使用一组极端,将观测值集中在组中可以改善统计推断。我们研究了与金融,气候科学和水文学中风险评估有关的三个数据集。在所有三种情况下,问题都可以作为具有潜在组结构和特定于组的参数为极值面板回归模型。我们提出了一种新算法,将个人共同分配给潜在组,并估算每个组内回归模型的参数。我们的方法有效地恢复了基本的组结构,而无需事先信息,并且对于三个数据集,它提供了改进的回报级估计,并有助于回答特定于领域的重要问题。

Extreme value applications commonly employ regression techniques to capture cross-sectional heterogeneity or time-variation in the data. Estimation of the parameters of an extreme value regression model is notoriously challenging due to the small number of observations that are usually available in applications. When repeated extreme measurements are collected on the same individuals, i.e., a panel of extremes is available, pooling the observations in groups can improve the statistical inference. We study three data sets related to risk assessment in finance, climate science, and hydrology. In all three cases, the problem can be formulated as an extreme value panel regression model with a latent group structure and group-specific parameters. We propose a new algorithm that jointly assigns the individuals to the latent groups and estimates the parameters of the regression model inside each group. Our method efficiently recovers the underlying group structure without prior information, and for the three data sets it provides improved return level estimates and helps answer important domain-specific questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源