论文标题

dcnngrasp:通过自适应正规器学习迈向准确的掌握模式识别

DcnnGrasp: Towards Accurate Grasp Pattern Recognition with Adaptive Regularizer Learning

论文作者

Zhang, Xiaoqin, Huang, Ziwei, Zheng, Jingjing, Wang, Shuo, Jiang, Xianta

论文摘要

掌握模式识别的任务旨在根据视觉信息得出对象的适用类型。当前的最新方法忽略了对象的类别信息,这对于掌握模式识别至关重要。本文介绍了一种新型的双分支卷积神经网络(DCNNGRASP),以实现对象类别分类的联合学习并掌握模式识别。 dcnngrasp将对象类别分类作为一项辅助任务,以提高掌握模式识别的有效性。同时,通过最大化后验来得出一种称为具有自适应正规剂的联合跨凝结术的新损失函数,从而显着改善了模型性能。此外,根据新的损失功能,提出了一种培训策略来最大程度地提高两项任务的协作学习。该实验是在五个家庭对象数据集上进行的,包括RGB-D对象数据集,HIT-GPREC数据集,Amsterdam对象图像库(ALOI),哥伦比亚大学图像库(COIL-100)和Meganepro DataSet 1。实验结果表明,所提出的方法可以通过几种状态式的方法来实现竞争性的竞争性能,以实现竞争性识别方法。具体而言,对于在RGB-D对象数据集上测试新对象的情况下,我们的方法甚至优于第二好的,将近15%的速度胜过15%。

The task of grasp pattern recognition aims to derive the applicable grasp types of an object according to the visual information. Current state-of-the-art methods ignore category information of objects which is crucial for grasp pattern recognition. This paper presents a novel dual-branch convolutional neural network (DcnnGrasp) to achieve joint learning of object category classification and grasp pattern recognition. DcnnGrasp takes object category classification as an auxiliary task to improve the effectiveness of grasp pattern recognition. Meanwhile, a new loss function called joint cross-entropy with an adaptive regularizer is derived through maximizing a posterior, which significantly improves the model performance. Besides, based on the new loss function, a training strategy is proposed to maximize the collaborative learning of the two tasks. The experiment was performed on five household objects datasets including the RGB-D Object dataset, Hit-GPRec dataset, Amsterdam library of object images (ALOI), Columbia University Image Library (COIL-100), and MeganePro dataset 1. The experimental results demonstrated that the proposed method can achieve competitive performance on grasp pattern recognition with several state-of-the-art methods. Specifically, our method even outperformed the second-best one by nearly 15% in terms of global accuracy for the case of testing a novel object on the RGB-D Object dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源