论文标题
平衡图形的颜色
Balancing connected colourings of graphs
论文作者
论文摘要
我们表明,包含两个边缘 - 连接树的任何图形$ g $的边缘可以是蓝色/红色的,因此蓝色和红色的图是连接的,并且每个顶点的蓝色和红色度最大都不同。这改善了Hörsch的结果。我们讨论了关于挖掘,无限图和一个计算问题问题的变化,并解决了Hörsch的另一个问题。
We show that the edges of any graph $G$ containing two edge-disjoint spanning trees can be blue/red coloured so that the blue and red graphs are connected and the blue and red degrees at each vertex differ by at most four. This improves a result of Hörsch. We discuss variations of the question for digraphs, infinite graphs and a computational question, and resolve two further questions of Hörsch in the negative.