论文标题

特征数,江亚组和非阳性曲率

Characteristic numbers, Jiang subgroup and non-positive curvature

论文作者

Li, Ping

论文摘要

通过完善Farrell的想法,我们在江型亚组方面提出了足够的条件,用于消失签名和Hirzebruch的$χ_y$ genus,分别在紧凑型和Kähler歧管上。沿着这条线,我们表明,当其基本群体的中心是非平凡时,非物性弯曲紧凑的Kähler歧管的$χ_y$ genus消失了,这部分回答了Farrell的问题。此外,在后一种情况下,每当Chern数字的复杂尺寸不超过$ 4 $,所有Chern数字都消失了,这也为作者和Zheng提出的猜想提供了一些证据。

By refining an idea of Farrell, we present a sufficient condition in terms of the Jiang subgroup for the vanishing of signature and Hirzebruch's $χ_y$-genus on compact smooth and Kähler manifolds respectively. Along this line we show that the $χ_y$-genus of a non-positively curved compact Kähler manifold vanishes when the center of its fundamental group is non-trivial, which partially answers a question of Farrell. Moreover, in the latter case all the Chern numbers vanish whenever its complex dimension is no more than $4$, which also provides some evidence to a conjecture proposed by the author and Zheng.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源