论文标题

固定模型的承诺模型检查问题

Fixed-Template Promise Model Checking Problems

论文作者

Asimi, Kristina, Barto, Libor, Butti, Silvia

论文摘要

固定式修订的约束满意度问题(CSP)可以看作是确定给定的原始正面一阶句子是否在固定结构(也称为模型)中为真的问题。我们研究了一类问题,可以在两个方向上同时概括CSP:我们修复了量词和布尔连接剂的集合$ \ MATHCAL {L} $,并且我们指定了每个约束的两个版本,一个强度强,一个弱。给定一个句子,该句子仅使用$ \ MATHCAL {L} $的符号,任务是区分句子在强大的意义上是真实的,还是即使在弱意义上也是错误的。我们将这些问题的计算复杂性分类为一阶逻辑的无效片段,即$ \ Mathcal {l} = \ {\ {\ cortists,\ land,\ lor \} $,我们证明了一些上层和下限的上层和下限,以获得积极的等值片段,$ \ Mathcal calcal cal} = \ {\存在,\ forall,\ land,\ lor \} $。部分结果就足够了,例如,对于后一个片段的所有扩展。

The fixed-template constraint satisfaction problem (CSP) can be seen as the problem of deciding whether a given primitive positive first-order sentence is true in a fixed structure (also called model). We study a class of problems that generalizes the CSP simultaneously in two directions: we fix a set $\mathcal{L}$ of quantifiers and Boolean connectives, and we specify two versions of each constraint, one strong and one weak. Given a sentence which only uses symbols from $\mathcal{L}$, the task is to distinguish whether the sentence is true in the strong sense, or it is false even in the weak sense. We classify the computational complexity of these problems for the existential positive equality-free fragment of first-order logic, i.e., $\mathcal{L} = \{\exists,\land,\lor\}$, and we prove some upper and lower bounds for the positive equality-free fragment, $\mathcal{L} = \{\exists,\forall,\land,\lor\}$. The partial results are sufficient, e.g., for all extensions of the latter fragment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源