论文标题
PinnerFormer:Pinterest上用户表示的序列建模
PinnerFormer: Sequence Modeling for User Representation at Pinterest
论文作者
论文摘要
在过去的几年中,连续模型在为个性化推荐系统提供动力方面变得越来越流行。这些方法传统上将用户在网站上的操作建模为预测用户下一个操作的顺序。尽管从理论上讲简单,但这些模型在生产中部署却非常具有挑战性,通常需要流式基础架构来反映最新的用户活动,并可能管理可变的数据来编码用户的隐藏状态。在这里,我们介绍了PinnerFormer,这是一种用户表示用户最近操作的顺序模型来预测用户未来长期参与度的用户表示。与先前的方法不同,我们通过新的致密全行动损失将建模调整为批处理基础架构,对长期的未来动作进行建模,而不是下一个动作预测。我们表明,通过这样做,我们会大大缩小每天生成一次的批处理用户嵌入与每当用户采取操作时生成的实时用户嵌入的差距。我们通过广泛的离线实验和消融来描述我们的设计决策,并在A/B实验中验证方法的疗效,以显示Pinterest的用户保留和参与度在比较PinnerFormer与我们以前的用户表示时的实质性改进。截至2021年秋季,PinnerFormer已在生产中部署。
Sequential models have become increasingly popular in powering personalized recommendation systems over the past several years. These approaches traditionally model a user's actions on a website as a sequence to predict the user's next action. While theoretically simplistic, these models are quite challenging to deploy in production, commonly requiring streaming infrastructure to reflect the latest user activity and potentially managing mutable data for encoding a user's hidden state. Here we introduce PinnerFormer, a user representation trained to predict a user's future long-term engagement using a sequential model of a user's recent actions. Unlike prior approaches, we adapt our modeling to a batch infrastructure via our new dense all-action loss, modeling long-term future actions instead of next action prediction. We show that by doing so, we significantly close the gap between batch user embeddings that are generated once a day and realtime user embeddings generated whenever a user takes an action. We describe our design decisions via extensive offline experimentation and ablations and validate the efficacy of our approach in A/B experiments showing substantial improvements in Pinterest's user retention and engagement when comparing PinnerFormer against our previous user representation. PinnerFormer is deployed in production as of Fall 2021.