论文标题

复杂性的多项式等效性

Polynomial Equivalence of Complexity Geometries

论文作者

Brown, Adam R.

论文摘要

本文证明了量子计算复杂性的广泛定义的多项式等效性。我们研究了统一组的右不变指标 - 通常称为“复杂性几何”,按照Nielsen提出的量子复杂性的定义 - 描述具有与量子电路相同的计算能力的指标类别。在这个通用类别中,可以在同类中的任何其他度量中近似可以在一个度量标准的情况下达到的任何统一,并且在允许误差中的长度和量子数和逆多项式的长度和逆多项式。我们描述了我们可能可以忍受的两种不同类型的错误类型的等效类:杀死距离误差和操作员 - 标准误差。两个等效类别中的所有指标均显示为指数直径。运算符等效类中的所有指标也均显示出对量子复杂性类BQP的替代定义。 我的结果扩展了Nielsen等人的结果,后者在2006年证明了一个特定的度量在多项式上等同于量子电路。 Nielsen等。公制非常高度弯曲。我表明,本文建立的大大扩大的等效类还包括具有适度曲率的指标。我认为,适度的曲率使这些指标更适合差异几何的工具,因此使它们更有前途的起点,用于尼尔森使用差别几何形状来证明复杂性下降的程序。

This paper proves the polynomial equivalence of a broad class of definitions of quantum computational complexity. We study right-invariant metrics on the unitary group -- often called `complexity geometries' following the definition of quantum complexity proposed by Nielsen -- and delineate the equivalence class of metrics that have the same computational power as quantum circuits. Within this universality class, any unitary that can be reached in one metric can be approximated in any other metric in the class with a slowdown that is at-worst polynomial in the length and number of qubits and inverse-polynomial in the permitted error. We describe the equivalence classes for two different kinds of error we might tolerate: Killing-distance error, and operator-norm error. All metrics in both equivalence classes are shown to have exponential diameter; all metrics in the operator-norm equivalence class are also shown to give an alternative definition of the quantum complexity class BQP. My results extend those of Nielsen et al., who in 2006 proved that one particular metric is polynomially equivalent to quantum circuits. The Nielsen et al. metric is incredibly highly curved. I show that the greatly enlarged equivalence class established in this paper also includes metrics that have modest curvature. I argue that the modest curvature makes these metrics more amenable to the tools of differential geometry, and therefore makes them more promising starting points for Nielsen's program of using differential geometry to prove complexity lowerbounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源