论文标题

蛇运动中有效的弯曲和提起模式

Efficient bending and lifting patterns in snake locomotion

论文作者

Alben, Silas

论文摘要

我们优化了三维蛇运动学的运动效率。我们假设蛇形主链的一般空间曲线表示,而小到中度的抬起并可以忽略不计。运动的成本包括针对摩擦和内部粘性耗散的工作。当仅限于平面运动学时,我们基于人群的优化方法找到了与以前基于牛顿的方法相同类型的Optima。几种最佳动议占上风。我们发现一个S形身体,中间和末端的交替抬起,以进行小型至中度的横向摩擦。对于大型横向摩擦,卷曲和滑动运动是典型的,具有较小的粘性耗散,取而代之的是用大粘性散发的大振幅弯曲。随着较小的粘性耗散,我们找到了局部优势,类似于跨摩擦系数空间的侧向运动。它们总是以优势提升动作为优势,平均输入功率为10--100 \%。

We optimize three-dimensional snake kinematics for locomotor efficiency. We assume a general space-curve representation of the snake backbone with small-to-moderate lifting off the ground and negligible body inertia. The cost of locomotion includes work against friction and internal viscous dissipation. When restricted to planar kinematics, our population-based optimization method finds the same types of optima as a previous Newton-based method. A few types of optimal motions prevail. We find an s-shaped body with alternating lifting of the middle and ends for small-to-moderate transverse friction. For large transverse friction, curling and sliding motions are typical with small viscous dissipation, replaced by large-amplitude bending with large viscous dissipation. With small viscous dissipation we find local optima that resemble sidewinding motions across friction coefficient space. They are always suboptimal to alternating lifting motions, with average input power 10--100\% higher.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源