论文标题

贝尔不平等违反随机互无偏基的行为

Bell inequality violations with random mutually unbiased bases

论文作者

Tabia, Gelo Noel M., Bavana, Varun Satya Raj, Yang, Shih-Xian, Liang, Yeong-Cherng

论文摘要

我们研究了使用随机选择的一组互无偏基(MUB)的两种纠缠纯状态(MUB)的贝尔非局部性的问题。有趣的是,即使我们仅采用二下的铃铛不平等现象,如果允许双方单独衡量足够数量的MUB,我们发现有很大的机会违反铃铛。特别是,对于最大纠缠的Qutrits和Quarks的情况,我们的数值估计表明,我们只能考虑这种钟声不平等,就可以通过近乎保证的贝尔违反。最大纠缠的Ququints的情况相似,尽管成功进行试验的机会降低到大约99.84美元\%$。经过仔细检查,我们发现即使所有这些无侵害实例都违反了一些更具设定的铃铛不平等。这些结果表明,即使双方不共享共同的参考框架,这些高维纠缠状态的贝尔非局部性的实验测试仍然可行。

We examine the problem of exhibiting Bell nonlocality for a two-qudit entangled pure state using a randomly chosen set of mutually unbiased bases (MUBs). Interestingly, even if we employ only two-setting Bell inequalities, we find a significant chance of obtaining a Bell violation if the two parties are individually allowed to measure a sufficient number of MUBs. In particular, for the case of maximally entangled qutrits and ququarts, our numerical estimates indicate that we can obtain near-guaranteed Bell violation by considering only such Bell inequalities. The case of maximally entangled ququints is similar, albeit the chance of ending up with a successful trial decreases somewhat to approximately $99.84\%$. Upon a closer inspection, we find that even all these no-violation instances violate some more-setting Bell inequalities. These results suggest that the experimental tests of Bell nonlocality for these higher-dimensional entangled states remain viable even if the two parties do not share a common reference frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源