论文标题
$ {\ cal n} = 4 $ supersymmetric Linare $ w _ {\ infty} [λ]
The ${\cal N}=4$ Supersymmetric Linear $W_{\infty}[λ]$ Algebra
论文作者
论文摘要
来自最近已知的$ {\ cal n} = 2 $ supersmmetric linear $ w _ {\ infty}^{k,k,k} [λ] $ algebra,其中$ k $是bifundamental $β\,γ$和c $ c $ c的基本(或反征用)代表的基础(或反征用)的维度, $ k = 2 $的超对称增强。我们构造$ {\ cal n} = 4 $应力能量张量,第一个$ {\ cal n} = 4 $多重及其运算符产品扩展(OPES),以上述双烟素。我们表明,第一个$ {\ cal n} = 4 $多重和本身之间的操作与$ {\ cal n}中的相应元素相同。 \ frac {(n+1)} {(k+n+2)} $,最多两个中心术语。这两个参数彼此相关$λ= \ frac {1} {2} \,λ_{co} $。我们还通过考虑$ {\ cal n}中的第二,第三和第四$ {\ cal n} = 4 $多重组来提供其他操作。
From the recently known ${\cal N}=2$ supersymmetric linear $W_{\infty}^{K,K}[λ]$ algebra where $K$ is the dimension of fundamental (or antifundamental) representation of bifundamental $β\, γ$ and $b \, c$ ghost system, we determine its ${\cal N}=4$ supersymmetric enhancement at $K=2$. We construct the ${\cal N}=4$ stress energy tensor, the first ${\cal N}=4$ multiplet and their operator product expansions (OPEs) in terms of above bifundamentals. We show that the OPEs between the first ${\cal N}=4$ multiplet and itself are the same as the corresponding ones in the ${\cal N}=4$ coset $\frac{SU(N+2)}{SU(N)}$ model under the large $(N,k)$ 't Hooft-like limit with fixed $λ_{co} \equiv \frac{(N+1)}{(k+N+2)}$, up to two central terms. The two parameters are related to each other $λ=\frac{1}{2}\, λ_{co}$. We also provide other OPEs by considering the second, the third and the fourth ${\cal N}=4$ multiplets in the ${\cal N}=4$ supersymmetric linear $W_{\infty}[λ]$ algebra.