论文标题

网络流量异常检测方法基于多量表残差功能

Network Traffic Anomaly Detection Method Based on Multi scale Residual Feature

论文作者

Duan, Xueyuan, Fu, Yu, Wang, Kun

论文摘要

为了解决传统的网络流量异常检测算法在长期域中没有足够的潜在特征的问题,提出了一种基于MUL-TI规模的剩余特征的异常检测方法。原始流量使用滑动窗口分为不同时间跨度的子分类,每个子序列都被分解并使用小波变换技术重建为不同级别的数据序列;堆叠的自动编码器(SAE)使用正常的网络流量构建了相似的特征空间,并使用重建样品和相似特征空间中的重建样品与输入样品之间的差异进行了重建的误差矢量;多路剩余组用于学习重建错误,流量分类由轻量级分类器完成。实验结果表明,与传统方法相比,提出的针对异常网络流量的检测性能得到了改善。它证实,较长的时间跨度和更多的S转换量表对在原始网络流量中发现潜在的多样性信息具有积极影响。

To address the problem that traditional network traffic anomaly detection algorithms do not suffi-ciently mine potential features in long time domain, an anomaly detection method based on mul-ti-scale residual features of network traffic is proposed. The original traffic is divided into subse-quences of different time spans using sliding windows, and each subsequence is decomposed and reconstructed into data sequences of different levels using wavelet transform technique; the stacked autoencoder (SAE) constructs similar feature space using normal network traffic, and gen-erates reconstructed error vector using the difference between reconstructed samples and input samples in the similar feature space; the multi-path residual group is used to learn reconstructed error The traffic classification is completed by a lightweight classifier. The experimental results show that the detection performance of the proposed method for anomalous network traffic is sig-nificantly improved compared with traditional methods; it confirms that the longer time span and more S transformation scales have positive effects on discovering potential diversity information in the original network traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源