论文标题

变形的弗雷德霍尔姆(Fredholm)的渐近学决定因素

Asymptotics of the deformed Fredholm determinant of the confluent hypergeometric kernel

论文作者

Dai, Dan, Zhai, Yu

论文摘要

在本文中,我们考虑了汇合高几何内核的变形弗雷德姆决定因素。该决定因素表示相应的确定点过程的差距概率,其中每个粒子以$1-γ$,$ 0 \ leqγ<1 $独立去除。当差距间隔倾向于无穷大,直至恒定项时,我们得出了变形的弗雷德霍尔姆决定因素的渐近学。作为结果的应用,我们为特征值计数函数和全球刚度上限建立了中心限制定理,以实现其最大偏差。

In this paper, we consider the deformed Fredholm determinant of the confluent hypergeometric kernel. This determinant represents the gap probability of the corresponding determinantal point process where each particle is removed independently with probability $1- γ$, $0 \leq γ<1$. We derive asymptotics of the deformed Fredholm determinant when the gap interval tends to infinity, up to and including the constant term. As an application of our results, we establish a central limit theorem for the eigenvalue counting function and a global rigidity upper bound for its maximum deviation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源