论文标题
旋转变形的紧凑物体周围的相对论平衡流体构型
Relativistic equilibrium fluid configurations around rotating deformed compact objects
论文作者
论文摘要
我们研究了非固定表面的平衡序列的物理特性,这些序列表征了围绕旋转变形的紧凑型物体,该磁盘是通过静态Q-量表的固定概括所描述的。时空对应于爱因斯坦磁场方程的精确解,因此我们可以对四极力矩和旋转参数的任意值进行分析。为了研究该磁盘模型的特性,我们分析了该时空中有界的轨迹。此外,我们发现,根据参数的值,我们可以具有各种圆盘结构,这些圆盘结构可以很容易地与静态情况区分开,也可以从Schwarzschild背景区分开。我们认为这项研究可用于评估中心紧凑型物体的旋转和四极参数。
We investigate the physical properties of equilibrium sequences of non-self-gravitating surfaces that characterize thick disks around a rotating deformed compact object described by a stationary generalization of the static q-metric. The spacetime corresponds to an exact solution of Einstein's field equations so that we can perform the analysis for arbitrary values of the quadrupole moment and rotation parameter. To study the properties of this disk's model, we analyze bounded trajectories in this spacetime. Further, we find that depending on the values of the parameters, we can have various disc structures that can easily be distinguished from the static case and also from the Schwarzschild background. We argue that this study may be used to evaluate the rotation and quadrupole parameters of the central compact object.