论文标题
共壁与LHC遇到
Conformal Colliders Meet the LHC
论文作者
论文摘要
大型强子对撞机(LHC)的高能量允许对能量流动器的多点相关器的形状和尺度进行首次测量,$ \ langleψ| \ Mathcal {E}(\ Vec N_1)\ Mathcal {E}(\ Vec N_2)\ CDOTS \ CDOTS \ MATHCAL {E}(\ VEC N_K)|ψ\ rangle $,为Lorentzian量子量子ChromodyNeamics(QCCD)提供新的见解。在这封信中,我们使用有效田间理论的最新进展来得出对光射线密度矩阵的严格分解定理,$ρ= |ψ\ rangle \ langle \ langleψ| $,在LHC的高横向动量喷气机内。使用灯光射线运算符产品扩展,可以从twist-2 spin- $ j $ j $ light-ray运算符的期望值中计算多点相关器的缩放行为,$ \ mathbb {o}^{[j] [j]} $,在此状态下我们以近代领先的顺序计算光射线密度矩阵,并将其与相关器的近距离对数缩放行为的结果相结合,最多六点,与CMS开放数据相比。这种理论上的准确性使我们能够解决LHC jets内部QCD光射线运算符的量子缩放尺寸。我们对LHC的轻射线密度矩阵的分解定理完成了能量相关器研究的最新发展与LHC现象学之间的联系,为各种精确的喷气子结构研究打开了大门。
The remarkably high energies of the Large Hadron Collider (LHC) have allowed for the first measurements of the shapes and scalings of multi-point correlators of energy flow operators, $\langle Ψ| \mathcal{E}(\vec n_1) \mathcal{E}(\vec n_2) \cdots \mathcal{E}(\vec n_k) |Ψ\rangle$, providing new insights into the Lorentzian dynamics of quantum chromodynamics (QCD). In this Letter, we use recent advances in effective field theory to derive a rigorous factorization theorem for the light-ray density matrix, $ρ= |Ψ\rangle \langle Ψ|$, inside high transverse momentum jets at the LHC. Using the light-ray operator product expansion, the scaling behavior of multi-point correlators can be computed from the expectation value of the twist-2 spin-$J$ light-ray operators, $\mathbb{O}^{[J]}$, in this state, $\text{Tr}[ ρ~\mathbb{O}^{[J]} ]$. We compute the light-ray density matrix at next-to-leading order, and combine this with results for the next-to-leading logarithmic scaling behavior of the correlators up to six-points, comparing with CMS Open Data. This theoretical accuracy allows us to resolve the quantum scaling dimensions of QCD light-ray operators inside jets at the LHC. Our factorization theorem for the light-ray density matrix at the LHC completes the link between recent developments in the study of energy correlators and LHC phenomenology, opening the door to a wide variety of precision jet substructure studies.