论文标题

无限尺寸分数泊松测量的生物表达方法

A biorthogonal approach to the infinite dimensional fractional Poisson measure

论文作者

Bendong, Jerome, Menchavez, Sheila, da Silva, José Luís

论文摘要

在本文中,我们使用生物三相方法来分析无限的尺寸分数泊松度量$π_σ^β$,$ 0 <β\ leq1 $,在Schwartz测试功能空间$ \ MATHCAL {D}'$上。复杂值函数的Hilbert Space $ l^{2}(π_σ^β)$是用广义的appell polyenmials $ \ mathbb {p}^{σ,β,α} $相关的系统的系统来描述的。 $ c_ {n}^{σ,β}(\ cdot)$,$ n \ in \ mathbb {n} _ {0} $,可以用第一和第二类的stirling ocersions表示,也可以用第一和第二种的stirling operator表示。与系统$ \ mathbb {p}^{σ,β,α} $相关联,有一个通用的双appell系统$ \ mathbb {q}^{σ,β,β,α} $,是biiorthogonal to $ \ m mathbb {p}^{p}^{σ,β,β,α} $。与度量$π_σ^β$相关的测试和广义函数空间完全以整体变换为整个函数完全表征。

In this paper we use a biorthogonal approach to the analysis of the infinite dimensional fractional Poisson measure $π_σ^β$, $0<β\leq1$, on the dual of Schwartz test function space $\mathcal{D}'$. The Hilbert space $L^{2}(π_σ^β)$ of complex-valued functions is described in terms of a system of generalized Appell polynomials $\mathbb{P}^{σ,β,α}$ associated to the measure $π_σ^β$. The kernels $C_{n}^{σ,β}(\cdot)$, $n\in\mathbb{N}_{0}$, of the monomials may be expressed in terms of the Stirling operators of the first and second kind as well as the falling factorials in infinite dimensions. Associated to the system $\mathbb{P}^{σ,β,α}$, there is a generalized dual Appell system $\mathbb{Q}^{σ,β,α}$ that is biorthogonal to $\mathbb{P}^{σ,β,α}$. The test and generalized function spaces associated to the measure $π_σ^β$ are completely characterized using an integral transform as entire functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源