论文标题
多任务AET具有正交切线规律性用于深色对象检测
Multitask AET with Orthogonal Tangent Regularity for Dark Object Detection
论文作者
论文摘要
由于光子不足和不良噪声,黑暗环境成为计算机视觉算法的挑战。为了增强黑暗环境中的对象检测,我们提出了一种新型的多任务自动编码转换(MAET)模型,该模型能够探索照明翻译背后的固有模式。 MAET以一种自学的方式,通过对物理噪声模型和图像信号处理(ISP)来编码和解码逼真的照明转换来学习固有的视觉结构。 基于此表示,我们通过解码边界框的坐标和类来实现对象检测任务。为了避免对两个任务的过度处理,我们的MAET通过强加正交切线规律性来消除对象并降低功能。这形成了一个参数歧管,可以通过最大化各个任务输出之间的切线之间的正交性来对多任务预测进行几何表达。我们的框架可以根据主流对象检测体系结构实现,并使用正常目标检测数据集(例如VOC和COCO)直接训练端到端。我们已经使用合成和现实世界数据集实现了最先进的性能。代码可在https://github.com/cuiziteng/maet上找到。
Dark environment becomes a challenge for computer vision algorithms owing to insufficient photons and undesirable noise. To enhance object detection in a dark environment, we propose a novel multitask auto encoding transformation (MAET) model which is able to explore the intrinsic pattern behind illumination translation. In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation considering the physical noise model and image signal processing (ISP). Based on this representation, we achieve the object detection task by decoding the bounding box coordinates and classes. To avoid the over-entanglement of two tasks, our MAET disentangles the object and degrading features by imposing an orthogonal tangent regularity. This forms a parametric manifold along which multitask predictions can be geometrically formulated by maximizing the orthogonality between the tangents along the outputs of respective tasks. Our framework can be implemented based on the mainstream object detection architecture and directly trained end-to-end using normal target detection datasets, such as VOC and COCO. We have achieved the state-of-the-art performance using synthetic and real-world datasets. Code is available at https://github.com/cuiziteng/MAET.