论文标题

在干扰攻击的情况下,环网中的八卦年龄

Age of Gossip in Ring Networks in the Presence of Jamming Attacks

论文作者

Kaswan, Priyanka, Ulukus, Sennur

论文摘要

我们考虑一个具有源的系统,该系统维护最新版本的文件,以及希望获取最新版本的文件的$ n $用户节点的环网络。源将以较新的文件版本作为点过程进行更新,并将其转发给用户节点,并使用无内存的八卦协议将其进一步转发给邻居。我们研究该网络的平均版本年龄在$ \ tilde {n} $干扰器的存在下,破坏了节点间通信。为此,我们构建了一个迷你环的替代系统模型,并证明可以将原始模型的版本年龄夹在替代模型的版本年龄的恒定倍数之间。我们表明,当干扰器的数量缩放为网络大小的分数功率时,即$ \ tilde n = cn^α$时,版本年龄缩放为$ \ sqrt {n} $ n时$α<\ frac {1} {1} {2} {2} $ n^$ n^a^$ n时$ n^a $α\ geq frac \ frac。由于没有任何干扰器的戒指网络的版本年龄为$ \ sqrt {n} $,我们的结果意味着,带闲话的版本年龄是可靠的,可在环网络中最多可与多达$ \ sqrt {n} $ jammers。

We consider a system with a source which maintains the most current version of a file, and a ring network of $n$ user nodes that wish to acquire the latest version of the file. The source gets updated with newer file versions as a point process, and forwards them to the user nodes, which further forward them to their neighbors using a memoryless gossip protocol. We study the average version age of this network in the presence of $\tilde{n}$ jammers that disrupt inter-node communications. To this purpose, we construct an alternate system model of mini-rings and prove that the version age of the original model can be sandwiched between constant multiples of the version age of the alternate model. We show that when the number of jammers scales as a fractional power of the network size, i.e., $\tilde n= cn^α$, the version age scales as $\sqrt{n}$ when $α< \frac{1}{2}$, and as $n^α$ when $α\geq \frac{1}{2}$. As the version age of a ring network without any jammers scales as $\sqrt{n}$, our result implies that the version age with gossiping is robust against up to $\sqrt{n}$ jammers in a ring network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源