论文标题

音乐得分跟随和音频对齐

Musical Score Following and Audio Alignment

论文作者

Lee, Lin Hao

论文摘要

实时跟踪音乐表演在乐谱上的位置,即随后的得分,在音乐练习,表演和制作中很有用。此类技术的示例应用程序包括计算机辅助伴奏和自动页面翻转。得分以下是一项具有挑战性的任务,尤其是在考虑绩效数据偏离与错误或表达选择的分数偏差时。 在该项目中,首先在两个开源评估测试台上进行了介绍,以下是介绍了该领域的广泛研究 - 一个定量和其他定性。提出了一种获取定量测试台数据的新方法,并引入了用于定性基准测试的Qualscofo数据集。随后,实施了三个不同的分数关注者,每个级别的班级。首先,是一个基于Beat Beat的追随者,用于交互式导体应用程序(TUNEAPP指挥),目的是展示得分的有趣应用。然后,实现了近似的字符串匹配(ASM)非实时追随者以补充定量测试台,并提供了更多分数的技术背景详细信息。最后,概述并实施了恒定的Q变换(CQT)动态时间扭曲(DTW)得分追随者在得分(例如多形音乐和性能偏差)中的重大挑战(例如)。结果表明,这种基于CQT的方法始终如一,并且在提取以下分数的音频功能方面表现出一种常用的基于FFT的方法。

Real-time tracking of the position of a musical performance on a musical score, i.e. score following, can be useful in music practice, performance and production. Example applications of such technology include computer-aided accompaniment and automatic page turning. Score following is a challenging task, especially when considering deviations in performance data from the score stemming from mistakes or expressive choices. In this project, the extensive research present in the field is first explored before two open-source evaluation testbenches for score following--one quantitative and the other qualitative--are introduced. A new way of obtaining quantitative testbench data is proposed, and the QualScofo dataset for qualitative benchmarking is introduced. Subsequently, three different score followers, each of a different class, are implemented. First, a beat-based follower for an interactive conductor application--the TuneApp Conductor--is created to demonstrate an entertaining application of score following. Then, an Approximate String Matching (ASM) non-real-time follower is implemented to complement the quantitative testbench and provide more technical background details of score following. Finally, a Constant Q-Transform (CQT) Dynamic Time Warping (DTW) score follower robust against major challenges in score following (such as polyphonic music and performance deviations) is outlined and implemented; it is shown that this CQT-based approach consistently and significantly outperforms a commonly used FFT-based approach in extracting audio features for score following.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源