论文标题
概率学习受到实现的限制,使用较弱的概率措施的傅立叶变换的表述
Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures
论文作者
论文摘要
本文考虑了一组给定的实现,作为Kullback-Leibler最低原则的约束,该原则被用作概率学习算法。这允许将数据有效整合到预测模型中。我们考虑了由一定数量的兴趣(无监督情况)组成的随机矢量的概率学习,或者是利息量和控制参数(有监督的情况)的概率学习。假定对该随机向量的独立实现进行训练集,并以未知的先验概率度量来生成。对于两个考虑的情况,可以使用QOI的一组目标实现。该框架是高维度的非高斯问题之一。基于概率度量的傅立叶变换(特征函数)的傅立叶变换的弱公式,开发了一种功能方法。该构建使得可以考虑到Kullback-Leibler最低原则的QOI实现目标集。所提出的方法允许使用控制参数(监督情况)估算QOI(无监督情况)的后验概率度量(无监督情况)或QOI的后接头概率度量。两种情况分析了后验概率度量的存在和唯一性。为了促进所提出的方法的实施,详细介绍了数值方面。在高维度中提出的应用证明了所提出算法的效率和鲁棒性。
This paper deals with the taking into account a given set of realizations as constraints in the Kullback-Leibler minimum principle, which is used as a probabilistic learning algorithm. This permits the effective integration of data into predictive models. We consider the probabilistic learning of a random vector that is made up of either a quantity of interest (unsupervised case) or the couple of the quantity of interest and a control parameter (supervised case). A training set of independent realizations of this random vector is assumed to be given and to be generated with a prior probability measure that is unknown. A target set of realizations of the QoI is available for the two considered cases. The framework is the one of non-Gaussian problems in high dimension. A functional approach is developed on the basis of a weak formulation of the Fourier transform of probability measures (characteristic functions). The construction makes it possible to take into account the target set of realizations of the QoI in the Kullback-Leibler minimum principle. The proposed approach allows for estimating the posterior probability measure of the QoI (unsupervised case) or of the posterior joint probability measure of the QoI with the control parameter (supervised case). The existence and the uniqueness of the posterior probability measure is analyzed for the two cases. The numerical aspects are detailed in order to facilitate the implementation of the proposed method. The presented application in high dimension demonstrates the efficiency and the robustness of the proposed algorithm.