论文标题
GAN倒置数据增强以改善结肠镜检查分类
GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion Classification
论文作者
论文摘要
将深度学习应用于医学成像的主要挑战是注释数据的匮乏。这项研究表明,通过生成对抗网络(GAN)倒置产生的合成结肠镜检查图像可以用作训练数据,以改善深度学习模型的病变分类性能。这种方法将带有相同标签的图像对逆转到语义上丰富且分离的潜在空间,并操纵潜在表示形式,以产生具有相同标签的新合成图像。我们在白光和窄带成像(NBI)之间执行图像模态翻译(样式传递)。我们还通过在原始训练图像之间插值来增加训练数据集中的病变形状的种类,从而生成逼真的合成病变图像。我们表明,这些方法的表现优于比较结肠镜检查数据增强技术,而无需重新培训多个生成模型。这种方法还利用数据集中的信息可能未设计用于下游任务的特定结肠镜检查。例如。使用肠道准备分级数据集进行息肉分类任务。我们的实验表明,这种方法可以执行多种结肠镜检查数据增强,从而将下游息肉分类性能改为基线和比较方法高达6%。
A major challenge in applying deep learning to medical imaging is the paucity of annotated data. This study demonstrates that synthetic colonoscopy images generated by Generative Adversarial Network (GAN) inversion can be used as training data to improve the lesion classification performance of deep learning models. This approach inverts pairs of images with the same label to a semantically rich & disentangled latent space and manipulates latent representations to produce new synthetic images with the same label. We perform image modality translation (style transfer) between white light and narrowband imaging (NBI). We also generate realistic-looking synthetic lesion images by interpolating between original training images to increase the variety of lesion shapes in the training dataset. We show that these approaches outperform comparative colonoscopy data augmentation techniques without the need to re-train multiple generative models. This approach also leverages information from datasets that may not have been designed for the specific colonoscopy downstream task. E.g. using a bowel prep grading dataset for a polyp classification task. Our experiments show this approach can perform multiple colonoscopy data augmentations, which improve the downstream polyp classification performance over baseline and comparison methods by up to 6%.