论文标题

使用序列到序列学习确定制造错误的因果关系

Identifying Cause-and-Effect Relationships of Manufacturing Errors using Sequence-to-Sequence Learning

论文作者

Reimer, Jeff, Wang, Yandong, Laridi, Sofiane, Urdich, Juergen, Wilmsmeier, Sören, Palmer, Gregory

论文摘要

在汽车生产中,将人体的预成型金属部分组装在完全自动化的生产线上。身体连续通过多个站点,并根据顺序要求进行处理。及时完成订单取决于基于站的单个操作,该操作在其计划的周期时间内得出结论。如果一个站点发生错误,则可能会产生敲门效应,从而导致下游站点的延迟。据我们所知,在这种情况下,没有任何方法可以自动区分源和敲击错误,也没有建立它们之间的因果关系。利用生产数据采集系统收集的有关条件的实时信息,我们提出了一种新型的车辆制造分析系统,该系统使用深度学习来建立源和连锁错误之间的联系。我们基准了三个序列到序列模型,并引入了一种新型的复合时间加权动作度量,以评估这种情况下的模型。我们在大众商用车记录的现实世界中的汽车生产数据集上评估了我们的框架。出乎意料的是,我们发现71.68%的序列包含源或敲入误差。关于SEQ2SEQ模型训练,我们发现与该域中的LSTM和GRU相比,变压器表现出更好的性能,特别是当相对于未来动作的持续时间的预测范围增加时。

In car-body production the pre-formed sheet metal parts of the body are assembled on fully-automated production lines. The body passes through multiple stations in succession, and is processed according to the order requirements. The timely completion of orders depends on the individual station-based operations concluding within their scheduled cycle times. If an error occurs in one station, it can have a knock-on effect, resulting in delays on the downstream stations. To the best of our knowledge, there exist no methods for automatically distinguishing between source and knock-on errors in this setting, as well as establishing a causal relation between them. Utilizing real-time information about conditions collected by a production data acquisition system, we propose a novel vehicle manufacturing analysis system, which uses deep learning to establish a link between source and knock-on errors. We benchmark three sequence-to-sequence models, and introduce a novel composite time-weighted action metric for evaluating models in this context. We evaluate our framework on a real-world car production dataset recorded by Volkswagen Commercial Vehicles. Surprisingly we find that 71.68% of sequences contain either a source or knock-on error. With respect to seq2seq model training, we find that the Transformer demonstrates a better performance compared to LSTM and GRU in this domain, in particular when the prediction range with respect to the durations of future actions is increased.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源