论文标题

尖峰图卷积网络

Spiking Graph Convolutional Networks

论文作者

Zhu, Zulun, Peng, Jiaying, Li, Jintang, Chen, Liang, Yu, Qi, Luo, Siqiang

论文摘要

图形卷积网络(GCN)由于学习图信息的出色表示能力而实现了令人印象深刻的性能。但是,GCN在深网上实施时需要昂贵的计算功率,因此很难将其部署在电池供电的设备上。相比之下,执行生物保真推理过程的尖峰神经网络(SNN)提供了节能的神经结构。在这项工作中,我们提出了SpikingGCN,这是一个端到端框架,旨在将GCN的嵌入与SNN的生物层性特征相结合。原始图数据根据图形卷积的结合编码为尖峰列车。我们通过利用与神经元节点结合的完全连接的层来进一步对生物信息处理进行建模。在各种场景(例如引用网络,图像图分类和推荐系统)中,我们的实验结果表明,该方法可以在最新的方法中获得竞争性能。此外,我们表明,在神经形态芯片上的SpikingGCN可以将能源效率的明显优势带入图形数据分析,这表明了其构建环境友好的机器学习模型的巨大潜力。

Graph Convolutional Networks (GCNs) achieve an impressive performance due to the remarkable representation ability in learning the graph information. However, GCNs, when implemented on a deep network, require expensive computation power, making them difficult to be deployed on battery-powered devices. In contrast, Spiking Neural Networks (SNNs), which perform a bio-fidelity inference process, offer an energy-efficient neural architecture. In this work, we propose SpikingGCN, an end-to-end framework that aims to integrate the embedding of GCNs with the biofidelity characteristics of SNNs. The original graph data are encoded into spike trains based on the incorporation of graph convolution. We further model biological information processing by utilizing a fully connected layer combined with neuron nodes. In a wide range of scenarios (e.g. citation networks, image graph classification, and recommender systems), our experimental results show that the proposed method could gain competitive performance against state-of-the-art approaches. Furthermore, we show that SpikingGCN on a neuromorphic chip can bring a clear advantage of energy efficiency into graph data analysis, which demonstrates its great potential to construct environment-friendly machine learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源