论文标题

单个利什曼原虫寄生虫的压缩AFM-IR高光谱纳米影像

Compressed AFM-IR hyperspectral nanoimaging of single Leishmania parasites

论文作者

Hornemann, A., Marschall, M., Metzner, S., Patoka, P., Cortes, S., Wübbeler, G., Hoehl, A., Rühl, E., Kästner, B., Elster, C.

论文摘要

红外高光谱成像是材料和生命科学领域的强大方法。然而,对现代亚分量纳米影像的扩展仍然是一种高效效率的技术,因为它通过固有的顺序方案获取数据。在这里,我们介绍了基于原子力显微镜的红外光谱(AFM-IR)的低级矩阵重建的数学技术,以进行有效的高光谱红外纳米影像。为了证明其应用潜力,我们选择了锥虫单细胞寄生虫利什曼原虫物种作为生物学重要性的现实靶标。选择了光谱范围从1300到1900 cm $^{ - 1} $的中红外光谱指纹窗口,并使用了220 nm的步骤宽度,用于单个寄生虫的纳米影像学。多元统计方法(例如分层聚类分析(HCA))用于提取化学上不同的空间位置。随后,我们从最初收集的数据立方体中仅随机选择了5%的134(x)$ \ times $ 50(y)$ \ times $ 148(频谱)AFM-IR测量结果,并通过低级别矩阵恢复重建了完整的数据。通过在完整数据方块和重建数据方面的群集区域显示一致性来评估该技术。我们得出的结论是,相应的测量时间超过14小时的时间可以减少到小时不到1小时。这些发现可以显着提高高光谱纳米影像学在涉及纳米材料和生物材料的学术和工业环境中的实际适用性。

Infrared hyperspectral imaging is a powerful approach in the field of materials and life sciences. However, the extension to modern sub-diffraction nanoimaging still remains a highly inefficient technique, as it acquires data via inherent sequential schemes. Here, we introduce the mathematical technique of low-rank matrix reconstruction to the sub-diffraction scheme of atomic force microscopy-based infrared spectroscopy (AFM-IR), for efficient hyperspectral infrared nanoimaging. To demonstrate its application potential, we chose the trypanosomatid unicellular parasites Leishmania species as a realistic target of biological importance. The mid-infrared spectral fingerprint window covering the spectral range from 1300 to 1900 cm$^{-1}$ was chosen and a step width of 220 nm was applied for nanoimaging of single parasites. Multivariate statistics approaches such as hierarchical cluster analysis (HCA) were used for extracting the chemically distinct spatial locations. Subsequently, we randomly selected only 5% from an originally gathered data cube of 134 (x) $\times$ 50 (y) $\times$ 148 (spectral) AFM-IR measurements and reconstructed the full data set by low-rank matrix recovery. The technique is evaluated by showing agreement in the cluster regions between full and reconstructed data cubes. We conclude that the corresponding measurement time of more than 14 hours can be reduced to less than 1 hour. These findings can significantly boost the practical applicability of hyperspectral nanoimaging in both academic and industrial settings involving nano- and bio-materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源