论文标题
在计算鬼像中的时间和空间变体的照明模式
Temporally and Spatially variant-resolution illumination patterns in computational ghost imaging
论文作者
论文摘要
传统的计算幽灵成像(CGI)使用带有一系列具有均匀分辨率的模式的光来照亮对象,然后根据目标和预设模式反映的光强度值来执行相关计算以获得对象图像。它需要大量的测量来获得高质量的图像,尤其是在要获得高分辨率图像的情况下。为了解决这个问题,我们开发了时间变化分辨率的照明模式,用不同成像分辨率的一系列模式代替了传统的统一分辨率照明模式。此外,我们建议将时间变量分辨率的照明模式和空间可变分辨率结构结合起来,以在时间和空间上发展变化(TSV)照明模式发展,这不仅提高了感兴趣区域(ROI)的成像质量(ROI),还可以提高噪声的稳健性。与CGI相比,使用所提出的照明模式的方法通过模拟和实验验证。对于相同数量的测量值,使用时间变量分辨率照明模式的方法比CGI具有更好的成像质量,但对噪声的鲁棒性较低。使用TSV照明模式使用的方法比使用时间变量分辨率照明模式和在相同数量的测量值下使用时间变量分辨率照明模式和CGI具有更好的成像质量。我们还通过实验验证,使用TSV模式的方法将应用于更高分辨率成像时具有更好的成像性能。所提出的方法有望解决当前难以实现高分辨率和高质量成像的计算幽灵成像。
Conventional computational ghost imaging (CGI) uses light carrying a sequence of patterns with uniform-resolution to illuminate the object, then performs correlation calculation based on the light intensity value reflected by the target and the preset patterns to obtain object image. It requires a large number of measurements to obtain high-quality images, especially if high-resolution images are to be obtained. To solve this problem, we developed temporally variable-resolution illumination patterns, replacing the conventional uniform-resolution illumination patterns with a sequence of patterns of different imaging resolutions. In addition, we propose to combine temporally variable-resolution illumination patterns and spatially variable-resolution structure to develop temporally and spatially variable-resolution (TSV) illumination patterns, which not only improve the imaging quality of the region of interest (ROI) but also improve the robustness to noise. The methods using proposed illumination patterns are verified by simulations and experiments compared with CGI. For the same number of measurements, the method using temporally variable-resolution illumination patterns has better imaging quality than CGI, but it is less robust to noise. The method using TSV illumination patterns has better imaging quality in ROI than the method using temporally variable-resolution illumination patterns and CGI under the same number of measurements. We also experimentally verify that the method using TSV patterns have better imaging performance when applied to higher resolution imaging. The proposed methods are expected to solve the current computational ghost imaging that is difficult to achieve high-resolution and high-quality imaging.