论文标题

蒙特卡洛对二元性和berezinskii-kosterlitz-二维$ q $ - 状态时钟模型的二维相变

Monte Carlo study of duality and the Berezinskii-Kosterlitz-Thouless phase transitions of the two-dimensional $q$-state clock model in flow representations

论文作者

Chen, Hao, Hou, Pengcheng, Fang, Sheng, Deng, Youjin

论文摘要

$ Q \ geq 5 $的二维$ q $ - 状态时钟模型随着温度降低,两种berezinskii-kosterlitz-thouless(BKT)相变。在这里,我们报告了平方矩时钟模型的广泛的蠕虫型模拟,分别是$ q = $ 5--9,分别来自高温和低温扩展。通过对易感性量的有限尺寸缩放分析,我们确定了关键点,以对现有结果的精确提高。由于双流表示形式,观察到临界区域中的每个点同时表现出一对异常维度,该维度为$η_1= 1/4 $和$η_2= 4/q^2 $在两个BKT过渡时。此外,近似自偶数点$β_ {\ rm sd}(l)$,这是由严格条件定义的,即两种流表示中的易感性都相同,几乎与系统大小$ l $独立于$β_ {\ rm sd} \ simeq q/simeq q/2π$ usympt usymptyly of System size $ l $ juny of System Size size y limity limity limitionally limity limitionally limity限制了。 $β_ {\ rm sd} $的指数$η$在统计误差中与$ 1/q $一致,只要$ q \ geq 5 $。基于此,我们进一步猜测$η(β_ {\ rm sd})= 1/q $完全保存,并且对于$ q $ q $ - 状态时钟通用类中的系统是通用的。我们的工作为与时钟模型的二元性和自二重性相关的丰富现象提供了生动的证明。

The two-dimensional $q$-state clock model for $q \geq 5$ undergoes two Berezinskii-Kosterlitz-Thouless (BKT) phase transitions as temperature decreases. Here we report an extensive worm-type simulation of the square-lattice clock model for $q=$5--9 in a pair of flow representations, from the high- and low-temperature expansions, respectively. By finite-size scaling analysis of susceptibility-like quantities, we determine the critical points with a precision improving over the existing results. Due to the dual flow representations, each point in the critical region is observed to simultaneously exhibit a pair of anomalous dimensions, which are $η_1=1/4$ and $η_2 = 4/q^2$ at the two BKT transitions. Further, the approximate self-dual points $β_{\rm sd}(L)$, defined by the stringent condition that the susceptibility like quantities in both flow representations are identical, are found to be nearly independent of system size $L$ and behave as $β_{\rm sd} \simeq q/2π$ asymptotically at the large-$q$ limit. The exponent $η$ at $β_{\rm sd}$ is consistent with $1/q$ within statistical error as long as $q \geq 5$. Based on this, we further conjecture that $η(β_{\rm sd}) = 1/q$ holds exactly and is universal for systems in the $q$-state clock universality class. Our work provides a vivid demonstration of rich phenomena associated with the duality and self-duality of the clock model in two dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源