论文标题

学习解决车辆路线问题:调查

Learning to Solve Vehicle Routing Problems: A Survey

论文作者

Bogyrbayeva, Aigerim, Meraliyev, Meraryslan, Mustakhov, Taukekhan, Dauletbayev, Bissenbay

论文摘要

本文提供了针对解决NP固定车辆路由问题(VRP)的机器学习方法的系统概述。最近,机器学习和运营研究社区都引起了人们的极大兴趣,可以通过纯学习方法或将它们与传统的手工启发式方法结合在一起。我们介绍了学习范式,解决方案结构,基础模型和算法的研究分类法。我们详细介绍了最先进的方法的结果,证明了它们使用传统方法的竞争力。该论文概述了未来的研究指示,以结合基于学习的解决方案,以克服现代运输系统的挑战。

This paper provides a systematic overview of machine learning methods applied to solve NP-hard Vehicle Routing Problems (VRPs). Recently, there has been a great interest from both machine learning and operations research communities to solve VRPs either by pure learning methods or by combining them with the traditional hand-crafted heuristics. We present the taxonomy of the studies for learning paradigms, solution structures, underlying models, and algorithms. We present in detail the results of the state-of-the-art methods demonstrating their competitiveness with the traditional methods. The paper outlines the future research directions to incorporate learning-based solutions to overcome the challenges of modern transportation systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源