论文标题

Max-min $ k $ - 凸多边形的分散

Max-Min $k$-Dispersion on a Convex Polygon

论文作者

Singireddy, Vishwanath R., Basappa, Manjanna

论文摘要

在本文中,我们考虑以下$ K $分散问题。鉴于$ n $ s $ n $点位于飞机上的位置,而整数$ k $($ 0 <k <n $),目标是计算一个子集$ s'\ subset s $,以便最大化$ | s'| = k $ and $ s之间的最小距离。基于有限的搜索树方法,我们在$ o(2^k(n^2 \ log n+n+n(\ log^2 n)(\ log k)(\ log k)))$ time中提出了一种精确的固定参数算法,其中$ k $是参数。所提出的精确算法比当前最佳精确指数算法[$ n^{o(\ sqrt {k})} $ - akagi et al。,(2018)的时间算法,每当$ k <c \ log log^c \ log^2 {n} $ for Soments nounds fors nose nostand $ c $时。然后,我们提出一个$ o(\ log {n})$ - 时间$ \ frac {1} {2 \ sqrt {2}} $ - 当$ k = 3 $以cONVEX位置顺序给出点时,该问题的近似算法。

In this paper, we consider the following $k$-dispersion problem. Given a set $S$ of $n$ points placed in the plane in a convex position, and an integer $k$ ($0<k<n$), the objective is to compute a subset $S'\subset S$ such that $|S'|=k$ and the minimum distance between a pair of points in $S'$ is maximized. Based on the bounded search tree method we propose an exact fixed-parameter algorithm in $O(2^k(n^2\log n+n(\log^2 n)(\log k)))$ time, for this problem, where $k$ is the parameter. The proposed exact algorithm is better than the current best exact exponential algorithm [$n^{O(\sqrt{k})}$-time algorithm by Akagi et al.,(2018)] whenever $k<c\log^2{n}$ for some constant $c$. We then present an $O(\log{n})$-time $\frac{1}{2\sqrt{2}}$-approximation algorithm for the problem when $k=3$ if the points are given in convex position order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源