论文标题

自适应恒定深度电路,用于操纵非阿布莱安人

Adaptive constant-depth circuits for manipulating non-abelian anyons

论文作者

Bravyi, Sergey, Kim, Isaac, Kliesch, Alexander, Koenig, Robert

论文摘要

我们考虑基于有限的$ g $的Kitaev的量子双重模型,并描述(a)准备基态的量子电路,(b)创建以任意距离分隔的Anyon对,以及(c)非破坏性拓扑电荷测量。我们表明,对于任何可解决的组$ g $,所有上述任务都可以通过恒定深度自适应电路实现,并具有几何局部的统一大门和中路测量值。可以根据以前的测量结果自适应地选择每个门。恒定的深度电路非常适合在嘈杂的硬件上实现,因为可以在量子相干时间内执行整个电路。因此,我们的结果可以促进对非亚伯粒子统计的物质外来阶段的实验研究。我们还表明,适应性对于我们的电路构建至关重要。也就是说,对于任何非亚伯利亚组$ g $,任务(b)无法通过非自适应恒定的本地电路实现。这与阿贝利安·艾尔(Abelian Anyons)形成鲜明对比,阿贝里安·艾尔(Abelian Anyons)可以在任意距离上创建并以深度为$ 1 $的电路,由广义保利大门组成。

We consider Kitaev's quantum double model based on a finite group $G$ and describe quantum circuits for (a) preparation of the ground state, (b) creation of anyon pairs separated by an arbitrary distance, and (c) non-destructive topological charge measurement. We show that for any solvable group $G$ all above tasks can be realized by constant-depth adaptive circuits with geometrically local unitary gates and mid-circuit measurements. Each gate may be chosen adaptively depending on previous measurement outcomes. Constant-depth circuits are well suited for implementation on a noisy hardware since it may be possible to execute the entire circuit within the qubit coherence time. Thus our results could facilitate an experimental study of exotic phases of matter with a non-abelian particle statistics. We also show that adaptiveness is essential for our circuit construction. Namely, task (b) cannot be realized by non-adaptive constant-depth local circuits for any non-abelian group $G$. This is in a sharp contrast with abelian anyons which can be created and moved over an arbitrary distance by a depth-$1$ circuit composed of generalized Pauli gates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源