论文标题

Hardy操作员和渐近Muntz-Szasz定理的概括

A generalization of Hardy's operator and an asymptotic Muntz-Szasz Theorem

论文作者

Agler, Jim, McCarthy, John E.

论文摘要

Hardy运算符具有所有单一功能作为特征向量。我们在L^2上研究有界的操作员,这些操作员将单一函数带到其他单一元素的倍数,指数转移。我们证明它们都使[0,s]不变的功能空间消失了。我们证明了一个渐近muntz-szasz定理,表征了一组函数,这些函数是单个单体组合的限制,其中n和2n之间的指数。

The Hardy operator has all the monomial functions as eigenvectors. We study bounded operators on L^2 that take monomial functions to multiples of other monomials, with a shifted exponent. We prove that they all leave the space of functions vanishing on [0,s] invariant. We prove an asymptotic Muntz-Szasz theorem, characterizing the set of functions that are limits of linear combinations of monomials with exponents between n and 2n.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源