论文标题

常规病理变量多重插补对丙型肝炎感染的实验室诊断的影响

The Effect of Multiple Imputation of Routine Pathology Variables on Laboratory Diagnosis of Hepatitis C Infection

论文作者

Menon, N., Lidbury, B. A., Richardson, A. M.

论文摘要

就诊断和患者管理而言,病理测试对现代医疗保健至关重要。汇总病理学结果为研究健康和医学中的基本问题和应用问题提供了机会,但是由于医生之间的测试概况而有所不同,因此出现了数据分析挑战,导致数据丢失。在这项研究中,我们对丙型肝炎(HCV)感染的实验室诊断进行了分析研究,并专注于如何最大化常规病理数据的预测价值。我们建议在使用多个插补时使用涌入 - 流出量度来帮助构建插补模型。 通过ACT病理学(澳大利亚堪培拉医院)获得了14,320名15至100岁社区患者的数据。计算涌入和流出,以确定哪些变量可能是缺失值的潜在强大预测指标。可用的病例分析和多个插补用于适应数据集中的缺失值。逻辑回归模型和逐步选择方法用于分析估算的数据集。比较了所有方法的预测能力。 模型在乘以估算的数据上的预测能力类似于基于完整数据的模型的能力。乘积数据的优点是,它允许在逻辑模型中包含所有完整的变量,从而确定更广泛的测试结果选择,这可能导致HCV的实验室预测增强。 多个插补是一个重要的统计资源,允许研究中的所有个人为分析提供的所有数据提供贡献。 MI与流入和浮肿的值结合使用,确定了HEPC感染的潜在预测指标。变量年龄,性别和丙氨酸氨基转移酶已被证明是HCV感染的强大实验室预测指标。

Pathology tests are central to modern healthcare in terms of diagnosis and patient management. Aggregated pathology results provide opportunities for research into fundamental and applied questions in health and medicine, but data analytic challenges appear since test profiles vary between medical practitioners, resulting in missing data. In this study we provide an analytical investigation of the laboratory diagnosis of Hepatitis C (HCV) infection and focus on how to maximize the predictive value of routine pathology data. We recommend using the Influx - Outflux measures to help construct the imputation model when using multiple imputation. Data from 14,320 community-patients aged 15 - 100 years were accessed via ACT Pathology (The Canberra Hospital, Australia). Influx and Outflux were calculated to identify which variables were potentially powerful predictors of missing values. Available Case analysis and Multiple Imputation were used to accommodate missing values in the dataset. Logistic regression model and stepwise selection method were used for analysing the imputed datasets. The predictive power of all methods was compared. The predictive power of the models on multiply imputed data was similar to the power of the models based on complete data. The advantage of multiply imputed data was that it allowed for the inclusion of all the completed variables in the logistic models, thus identifying a broader selection of test results that could lead to the enhanced laboratory prediction of HCV. Multiple imputation is an important statistical resource allowing all individuals in a study to contribute whatever data they have supplied to the analysis. MI in combination with the values of Influx and Outflux identifies potential predictors of HepC infection. Variables age, gender and alanine aminotransferase have been shown to be strong laboratory predictors of HCV infection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源