论文标题

二维随机场模型的相关长度的上限和下限

Upper and Lower Bounds for the Correlation Length of the Two-Dimensional Random-Field Ising Model

论文作者

Bar-Nir, Yoav

论文摘要

我们研究了弱场强度$ \ varepsilon $的二维随机场ISING模型中的相关衰减速率。我们将相关性衰减的证据的元素与艾森曼(Aizenman)的结果进行定量改进,以随机曲线的曲折性上的曲折性获得,以获得$ \ exp(\ exp(o(1/\ varepsilon^{2}}} {2}} {2}}))的上限(\ exp exp(o(1/\ varepsilon^{2}}})))$上的相关长度。相反,我们通过适应Fisher-fröhlich-spencer的方法来表明,在侧面长度的正方形域上,$ \ exp(o(1/\ varepsilon^{2/3}}))$该模型继续表现出低温下边界条件的强烈依赖。

We study the rate of correlation decay in the two-dimensional random-field Ising model at weak field strength $\varepsilon$. We combine elements of the recent proof of exponential decay of correlations with a quantitative refinement of a result of Aizenman--Burchard on the tortuosity of random curves to obtain an upper bound of the form $\exp(\exp(O(1/\varepsilon^{2})))$ on the correlation length of the model at all temperatures. Conversely, we show, by adapting methods of Fisher--Fröhlich--Spencer, that on square domains of side length as large as $\exp(O(1/\varepsilon^{2/3}))$ the model continues to exhibit strong dependence on boundary conditions at low temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源