论文标题

Milli流系统中的闪存胶体金纳米颗粒组件:对热质的影响和光学信号的扩增

Flash Colloidal Gold Nanoparticle Assembly in a Milli Flow System: Implications for Thermoplasmonic and for the Amplification of Optical Signals

论文作者

Voisin, Florent, Lelong, Gérald, Guigner, Jean-Michel, Bizien, Thomas, Mallet, Jean-Maurice, Carn, Florent

论文摘要

水中接触中有限数量的纳米晶体的组装和稳定可以最大化每单位材料的光吸收。应用在应用中利用的一些局部等离子特性,例如光热和光信号放大,也将最大化,这在质量产生纳米结构的角度很重要。主要锁是将带电的颗粒紧密接触需要筛选/抑制的电荷,从而导致微米骨料的快速形成。在本文中,我们表明,可以使用由湍流混合器和流动反应器组成的毫流动系统获得含有少于60个颗粒的聚集体。此过程允许在启动聚合过程后毫秒毫秒停止快速的非平衡胶体聚集过程,该过程允许控制聚合数。作为一项案例研究,我们考虑了在水中柠檬酸盐涂层金纳米颗粒(NP)和ALCL3的快速混合,以启动由扩散控制的快速聚集。使用第二个混合器注入多阳离子的溶液使我们能够通过形成过度充电的阳离子聚集体在反应时间后阻止聚集过程。我们在几秒钟内获得了由粒子聚集体组成的几毫升的稳定分散体。我们的主要结果是表明,可以通过在10 ms和1 s之间改变A反应时间来掌握每个骨料2至60 np之间的平均聚合数。

The assembly and stabilization of a finite number of nanocrystals in contact in water could maximize the optical absorption per unit of material. Some local plasmonic properties exploited in applications, such as photothermia and optical signal amplification, would also be maximized which is important in the perspective of mass producing nanostructures at a lower cost. The main lock is that bringing charged particles in close contact requires the charges to be screened/suppressed, which leads to the rapid formation of micrometric aggregates. In this article, we show that aggregates containing less than 60 particles in contact can be obtained with a milli-flow system composed of turbulent mixers and flow reactors. This process allows to stop a fast non-equilibrium colloidal aggregation process at millisecond times after the initiation of the aggregation process which allows to control the aggregation number. As a case study, we considered the rapid mixing of citrate coated gold nanoparticles (NP) and AlCl3 in water to initiate a fast aggregation controlled by diffusion. Injecting a solution of polycation using a second mixer allowed us to arrest the aggregation process after a reaction time by formation of overcharged cationic aggregates. We obtained within seconds stable dispersions of a few milliliters composed of particle aggregates. Our main result is to show that it is possible to master the average aggregation number between 2 and 60 NP per aggregate by varying the a reaction time between 10 ms and 1 s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源