论文标题
街机:网络异常检测的对抗正规卷积自动编码器
ARCADE: Adversarially Regularized Convolutional Autoencoder for Network Anomaly Detection
论文作者
论文摘要
随着异质IP连接的设备的数量和交通量的增加,安全漏洞的可能性也随之增加。未发现这些违规行为的剥削可能会带来严重的网络安全和隐私风险。基于异常的\ acp {ids}在网络安全中起着至关重要的作用。在本文中,我们提出了一种实际无监督的基于异常的深度学习检测系统,称为ARCADE(对抗正规化的卷积自动编码器,用于无监督的网络异常检测)。使用卷积\ ac {ae},Arcade可以使用几个初始网络流的原始字节的子集自动构建正常流量的轮廓,以便在潜在的网络异常和入侵中可以有效地检测到它们在对网络造成更大损害之前。街机专门针对正常流量进行培训。提出了一种对抗性训练策略,以使\ ac {ae}重建\ ac {ae}重建网络流的功能正常,从而提高其异常检测功能。所提出的方法比用于网络异常检测的最新深度学习方法更有效。即使仅检查两个网络流的初始数据包,街机也可以有效地检测恶意软件的感染和网络攻击。街机的参数比基线的参数少20倍,实现了明显更快的检测速度和反应时间。
As the number of heterogenous IP-connected devices and traffic volume increase, so does the potential for security breaches. The undetected exploitation of these breaches can bring severe cybersecurity and privacy risks. Anomaly-based \acp{IDS} play an essential role in network security. In this paper, we present a practical unsupervised anomaly-based deep learning detection system called ARCADE (Adversarially Regularized Convolutional Autoencoder for unsupervised network anomaly DEtection). With a convolutional \ac{AE}, ARCADE automatically builds a profile of the normal traffic using a subset of raw bytes of a few initial packets of network flows so that potential network anomalies and intrusions can be efficiently detected before they cause more damage to the network. ARCADE is trained exclusively on normal traffic. An adversarial training strategy is proposed to regularize and decrease the \ac{AE}'s capabilities to reconstruct network flows that are out-of-the-normal distribution, thereby improving its anomaly detection capabilities. The proposed approach is more effective than state-of-the-art deep learning approaches for network anomaly detection. Even when examining only two initial packets of a network flow, ARCADE can effectively detect malware infection and network attacks. ARCADE presents 20 times fewer parameters than baselines, achieving significantly faster detection speed and reaction time.