论文标题

签名排列的HOPF代数的高核心体组的弱顺序和单一基础

The weak order on the hyperoctahedral group and the monomial basis for the Hopf algebra of signed permutations

论文作者

Yu, Houyi

论文摘要

我们给出了高度二十体群的弱顺序的组合描述。然后,该表征用于分析高肠面积偏移产物的顺序理论特性。结果表明,每种移位的产品都是某些间隔的不相交联合,可以将其嵌入到高粒面体中。作为应用程序,我们研究了签名的排列的Hopf代数$ \ Mathfrak {H} sym $的单一基础,这与MöbiusiNversion在高核方面的弱顺序上相关。事实证明,从$ \ mathfrak {h} sym $到$ b $ b $ quasi-Metresmmetric函数的代数为零或单级准对称函数$ b $的代数为代数。

We give a combinatorial description for the weak order on the hyperoctahedral group. This characterization is then used to analyze the order-theoretic properties of the shifted products of hyperoctahedral groups. It is shown that each shifted product is a disjoint union of some intervals, which can be convex embedded into a hyperoctahedral group. As an application, we investigate the monomial basis for the Hopf algebra $\mathfrak{H}Sym$ of signed permutations, related to the fundamental basis via Möbius inversion on the weak order on hyperoctahedral groups. It turns out that the image of a monomial basis element under the descent map from $\mathfrak{H}Sym$ to the algebra of type $B$ quasi-symmetric functions is either zero or a monomial quasi-symmetric function of type $B$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源