论文标题

没有大生物和瘦梯子的驯服图

Taming graphs with no large creatures and skinny ladders

论文作者

Gajarský, Jakub, Jaffke, Lars, Lima, Paloma T., Novotná, Jana, Pilipczuk, Marcin, Rzążewski, Paweł, Souza, Uéverton S.

论文摘要

We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph class $\mathcal{G}$ there exists a constant $k$ such that no member of $\mathcal{G}$ contains a $k$-creature as an induced subgraph or a $k$-skinny-ladder as an induced minor, then there exists a多项式$ p $,以使每个$ g \ in \ mathcal {g} $最多包含$ p(| v(g)|)$最小分隔符。由于Fomin,Todinca和Villanger的结果[Siam J. Comput。 [2015]后者需要以最大重量独立集,反馈顶点集和许多其他问题的多项式时间算法的存在,并且仅限于$ \ Mathcal {g} $的输入图。此外,如Gartland和Lokshtanov所示,我们的结果暗示了遗传图类别的完整二分法,这是由一组有限的禁止的诱导子图(承认最小分隔符数量的多项式限制)定义的,并包含具有数量的许多图形,具有数量的数量数量,具有指数分隔符的数量)。

We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph class $\mathcal{G}$ there exists a constant $k$ such that no member of $\mathcal{G}$ contains a $k$-creature as an induced subgraph or a $k$-skinny-ladder as an induced minor, then there exists a polynomial $p$ such that every $G \in \mathcal{G}$ contains at most $p(|V(G)|)$ minimal separators. By a result of Fomin, Todinca, and Villanger [SIAM J. Comput. 2015] the latter entails the existence of polynomial-time algorithms for Maximum Weight Independent Set, Feedback Vertex Set and many other problems, when restricted to an input graph from $\mathcal{G}$. Furthermore, as shown by Gartland and Lokshtanov, our result implies a full dichotomy of hereditary graph classes defined by a finite set of forbidden induced subgraphs into tame (admitting a polynomial bound of the number of minimal separators) and feral (containing infinitely many graphs with exponential number of minimal separators).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源