论文标题
$ \ MATHCAL {N} = 4 $ SYM和扭曲的紧凑型的不可逆转对称性
Non-Invertible Symmetries of $\mathcal{N}=4$ SYM and Twisted Compactification
论文作者
论文摘要
最近已经理解了不可变形的对称性,可以在QFTS的RG流动上提供有趣的对比。在这项工作中,我们展示了如何通过所谓的“不可逆转的扭曲紧凑型”来使用不可变形的对称性来生成全新的RG流。我们在4D $ \ Mathcal {n} = 4 $ super-yang-mills(sym)到三个维度的扭曲压缩的示例中说明了这个想法。在提供了从4D $ \ MATHCAL {N} = 4 $ sym的Montonen-Olive二元性转换中降低的不可转化对称性的目录之后,我们表明,可以使用不可依赖的对称性进行扭曲的压实,可用于获得3D $ \ MATHCAL {N} = 6 $ soume,如果某种程度上可以通过一种不可伸出的态度来获得不可或缺的问题。
Non-invertible symmetries have recently been understood to provide interesting contraints on RG flows of QFTs. In this work, we show how non-invertible symmetries can also be used to generate entirely new RG flows, by means of so-called "non-invertible twisted compactification". We illustrate the idea in the example of twisted compactifications of 4d $\mathcal{N}=4$ super-Yang-Mills (SYM) to three dimensions. After giving a catalogue of non-invertible symmetries descending from Montonen-Olive duality transformations of 4d $\mathcal{N}=4$ SYM, we show that twisted compactification by non-invertible symmetries can be used to obtain 3d $\mathcal{N}=6$ theories which appear otherwise unreachable if one restricts to twists by invertible symmetries.