论文标题
Operadic类别和准gröbner类别
Operadic categories and quasi-Gröbner categories
论文作者
论文摘要
Sam和Snowden引入了准gröbner类别,以统一对代表稳定的类别的处理。我们提供了准Gröbner类别的新示例。这些类别中的大多数是用于编码同型相干结构的BATANIN和MARKL的经营类别。这表明其他经营类别也可能是准gröbner。此外,我们表明set-operads构成了Operadic类别类别的完整子类别。我们陈述了几个开放问题。
Quasi-Gröbner categories were introduced by Sam and Snowden to unify treatment of categories in representation stability. We give new examples of quasi-Gröbner categories. Most of these categories are operadic categories of Batanin and Markl which are used to encode homotopy coherent structures. This suggests that other operadic categories might also be quasi-Gröbner. Additionally, we show that set-operads form a full subcategory of the category of operadic categories. We state several open problems.