论文标题
$^6 $ li核的量子计算通过有序的统一耦合簇
Quantum computing of the $^6$Li nucleus via ordered unitary coupled clusters
论文作者
论文摘要
变分量子本素(VQE)是一种计算量子多体系统的地面和激发状态能量的算法。算法和主动研究区域的关键组成部分是构造参数化的试验波函数 - 所谓的变分安萨兹。波函数参数化应该足够表达,即代表量子系统的真实特征态,用于某种选择参数值。另一方面,它应该是可训练的,即参数的数量不应随着系统的大小而指数增长。在这里,我们将VQE应用于寻找奇数核$^6 $ li的地面和激发状态能量的问题。我们研究了单一耦合簇ANSATZ对VQE算法收敛中订购费米子激发算子的影响,仅使用仅保留$ J_z $量子数的操作员。在下降顺序的情况下,通过两个数量级提高了精度。我们首先使用具有任意测量精度的经典状态矢量模拟器来计算最佳ANSATZ参数值,然后使用这些值来评估来自IBM的超导量子芯片上$^6 $ li的能量本质。我们通过使用误差缓解技术后进行后处理结果,并能够分别以$^6 $ li的第一个激发状态重现确切的能量,分别为3.8%和0.1%。
The variational quantum eigensolver (VQE) is an algorithm to compute ground and excited state energy of quantum many-body systems. A key component of the algorithm and an active research area is the construction of a parametrized trial wavefunction -- a so called variational ansatz. The wavefunction parametrization should be expressive enough, i.e. represent the true eigenstate of a quantum system for some choice of parameter values. On the other hand, it should be trainable, i.e. the number of parameters should not grow exponentially with the size of the system. Here, we apply VQE to the problem of finding ground and excited state energies of the odd-odd nucleus $^6$Li. We study the effects of ordering fermionic excitation operators in the unitary coupled clusters ansatz on the VQE algorithm convergence by using only operators preserving the $J_z$ quantum number. The accuracy is improved by two order of magnitude in the case of descending order. We first compute optimal ansatz parameter values using a classical state-vector simulator with arbitrary measurement accuracy and then use those values to evaluate energy eigenstates of $^6$Li on a superconducting quantum chip from IBM. We post-process the results by using error mitigation techniques and are able to reproduce the exact energy with an error of 3.8% and 0.1% for the ground state and for the first excited state of $^6$Li, respectively.