论文标题
从微观动力学衍生分数多孔培养基方程
Derivation of the fractional porous medium equation from a microscopic dynamics
论文作者
论文摘要
在本文中,我们得出了分数拉普拉斯式的任何功率的分数多孔培养基方程,作为具有远距离相互作用的随机颗粒的显微动力学的流体动力学极限,但跳跃速率高度取决于相互作用发生的地点附近的占用率。
In this article we derive the fractional porous medium equation for any power of the fractional Laplacian as the hydrodynamic limit of a microscopic dynamics of random particles with long range interactions, but the jump rate highly depends on the occupancy near the sites where the interactions take place.