论文标题

球形可重构同质模块化软件(MSOROS)的拓扑和形态设计

Topology and morphology design of spherically reconfigurable homogeneous Modular Soft Robots (MSoRos)

论文作者

Freeman, Caitlin, Maynard, Michael, Vikas, Vishesh

论文摘要

想象一下,一群可以探索环境的陆地机器人,并且在完成此任务后,将其重新配置为球形球并推出。这种维度变化改变了运动的动力,可以帮助他们操纵可变地形。球体 - 平面重新配置等效于将球形壳投射到平面上,这是不可能的操作。幸运的是,软材料有可能适应高斯曲率的差异。模块化软机器人(MSOROS)有望通过利用其连续性和可变形性来实现维度变化。我们介绍了能够在球形和平面配置之间重新配置的MSOROS的拓扑和形态设计。我们的方法基于几何形状,其中柏拉图固体决定了平面对球重构所需的模块数量和所得球的半径,例如,球形重新配置需要四个“基于四面体”或六个基于tetrahedron的'或六个基于多维数据集的msoros。该方法涉及:(1)在限制球上“模块 - 流程学曲线”的截面截面预测,以生成球形拓扑,(2)球形拓扑的方位型预测在球形拓扑上的方位型预测到在平面拓扑中导致物理和凝固能力的物理范围的切线平面上的切线平面,以及(3),(3)有限宽度,电动机刺激的MSORO。拓扑设计被证明是刻度不变的,即基本柏拉图固体的缩放在球形和平面拓扑中线性反映。使用量化球体到平面失真的度量的度量,用于重新配置和移动能力,优化了模块 - 流程曲线。腔的几何形状可优化肢体刚度和卷曲能力,而不会损害执行器的结构完整性。

Imagine a swarm of terrestrial robots that can explore an environment, and, upon completion of this task, reconfigure into a spherical ball and roll out. This dimensional change alters the dynamics of locomotion and can assist them to maneuver variable terrains. The sphere-plane reconfiguration is equivalent to projecting a spherical shell onto a plane, an operation which is not possible without distortions. Fortunately, soft materials have potential to adapt to this disparity of the Gaussian curvatures. Modular Soft Robots (MSoRos) have promise of achieving dimensional change by exploiting their continuum and deformable nature. We present topology and morphology design of MSoRos capable of reconfiguring between spherical and planar configurations. Our approach is based in geometry, where a platonic solid determines the number of modules required for plane-to-sphere reconfiguration and the radius of the resulting sphere, e.g., four `tetrahedron-based' or six `cube-based' MSoRos are required for spherical reconfiguration. The methodology involves: (1)inverse orthographic projection of a `module-topology curve' onto the circumscribing sphere to generate the spherical topology,(2)azimuthal projection of the spherical topology onto a tangent plane at the center of the module resulting in the planar topology, and (3)adjusting the limb stiffness and curling ability by manipulating the geometry of cavities to realize a physical finite-width, Motor-Tendon Actuated MSoRo. The topology design is shown to be scale invariant, i.e., scaling of base platonic solid is reflected linearly in spherical and planar topologies. The module-topology curve is optimized for the reconfiguration and locomotion ability using a metric that quantifies sphere-to-plane distortion. The geometry of the cavity optimizes for the limb stiffness and curling ability without compromising the actuator's structural integrity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源